Knowledge Organization Systems for Semantic Models

Bob Allen

• Models Rather than Ontologies
 • Indexing articles from historical newspapers
 • Traditional full-text indexing ineffective
 • Better to develop a community model
Direct Representation of Scientific Research Reports

• Models rather than Ontologies
 • Models are integral to research reports
 • Snowball Earth theory
 • Geological claim that the earth may have frozen over completely – an extreme ice age
 • Main question – how the earth escaped that extreme ice age

• In this talk, we will consider some issues for how to build these models
 • Specifically, the relationship of knowledge representation systems to object-oriented programming languages
 • These models have complex objects and systems (parts, states, mechanisms), microworlds, and context
From Upper Ontologies to Object-Oriented Models

• Upper Ontology (Basic Formal Ontology - BFO)
 • Establishes categories of entities allowed in application ontologies
 • Realist, Aristotelian, Universals/Particulars
 • Main distinctions:
 • Continuants/Occurrents
 • Independent Continuants/Dependent Continuants

• Programming Languages
 • Basic Features:
 • Data Types, State Machines, Guard Conditions, Threads, Concurrency, Conditionals

• Object-oriented Analysis, Models, and Programs
 • Smalltalk is a better example of object-oriented programming than Java.
 • Language Features: Inheritance, Classes and Methods
 • Typical Applications: Microworlds
Representation of Semantics of Complex Objects (#1)

• Transitionals (implement state changes)
 • BFO focuses on Processes, but state changes seem equally important
 • Conditions on whether a transition will occur
 • Sequences of Transitionals are common
 • Mechanisms, Workflows, Other sequences
 • Natural language verbs have semantic roles, which should be applied in semantic modeling.

• Relationships
 • BFO Core relationships (“inheres in”).
 • Increasingly, BFO applications include ad hoc relationships.
 • Many ad hoc relationships are actually events
 • If there is a person, there is necessarily a birth event
 • Rules/Axioms
 • Rules are like ad hoc relationships about the world we are trying to model.
 • Example: “Predators eat Prey”

• Definitions
 • Describe what implied about the relationship of the given object to other objects
 • A waterfall must have water and a stream with a drop.
 • A bakery must have a baker, an oven, and baked goods, and be a commercial establishment.
 • For modeling, we need a structure to describe these connections.
Representation of Semantics of Complex Objects (#2)

• *Component/Integral object (handle/cup, punchline/joke)*
 • Parts associated with activities
 • Distinct functional units or structural parts.

• *Feature/Activity (paying/shopping)*
 • Subprocess/Process.
 • Segments of an activity may be modeled with states and threads.

• *Portion/Mass (slice/pie, grain/salt)*
 • If a portion is distinct, it may be a fiat-object part

• *Place/Area (Everglades/Florida, oasis/desert)*
 • Nested spatial regions or nested sites

• *Member/Collection: (tree/forest, card/deck)*
 • Object aggregates, such as “a heap of stones” and “a symphony orchestra”

• *Stuff/Object: (gin/martini, steel/bike)*
 • A material and an object made from it.
Representation of Semantics of Complex Objects (#3)

• States and Stages
 • Simple states attach dependent continuants
 • Complex states are more difficult. Is ice a different entity that liquid water?
 • Representation issues
 • Perhaps it is the state of an aggregate of water molecules, but the details are not clear.

• Configurations of Components and Scenarios
 • A person and the shirt they are wearing
 • Meta-operators, Yoked material entities

Representation of Semantics of Complex Objects (#4)

• Functions
 • In BFO, Functions are Realizable Dispositions
 • For example: “the function of amylase is to break down starch into sugar”
 • Depends on context

• Systems
 • A foundation of programming languages
 • Composed of interacting mechanisms
 • Many complex objects can be considered as systems

• Microworld
 • Environment for interacting objects
 • Can include gravity, temperature, pressure, etc
 • Focus on specific issues by nesting microworlds
 • Could be conceptualized as a type of system

Example: Semantic Model of Cardio-Pulmonary System
Constructed purely from local interaction (message passing) between material entities.
Evidence and Discourse

• Evidence
 • Snowball Earth model is based on a lot of details geological evidence.
 • Evidence has its own model that needs to be related to the broader model.

• Collecting evidence
 • Workflows for the collection of evidence
 • Measurement procedures

• Style of presentation in a research report
 • One approach: Tracking the emergence and synergies of the model and the evidence
 • A second approach: Direct Model descriptions
 • Follow the mechanisms of the model.
 • Ideally, one framework could support both approaches.
Conclusion

• We describe a modeling framework that is centered on complex objects.
• We have discussed solutions to several modeling puzzles.
• Future work can include more advanced Object-oriented modeling techniques such as:
 • Actors model (can include timing of interactions)
 • Object-oriented system dynamics
• Overall, modeling is a useful perspective.