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Summary

« Costs can run to the billions
«» Choose carefully
«» Choose narrowly

« Focus on improving content for customer utility and
process workflow improvements
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Al — It'll Be Awesome!
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1968 — what we expected/feared Al would to become!
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Artificial Intelligence (Al), Machine Learning

(ML), Deep Learning (DL)

characteristic of human intelligence.” caum mccieliand, 4 bec 2017)
« Glve the computer lots of data - It gives you results...

« Intelligence demonstrated by machines ... The study of
intelligent agents ... Machines mimicking cognitive
functions of humans (a la Wikipedia)
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Artificial Intelligence (Al), Machine Learning
(ML), Deep Learning (DL)

<+ P(A) means "Probability Of Event A”
<+ P(B|A) means “Probability of event B given Event A”
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Artificial Intelligence (Al), Machine Learning
(ML), Deep Learning (DL)

< B
Not Cat
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Artificial Intelligence (Al), Machine Learning
(ML), Deep Learning (DL)

< B
Not Dog
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Artificial Intelligence (Al), Machine Learning
(ML), Deep Learning (DL)

< ) IS - —
Not Cat Is Not Bucket B Reject
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Supporting theories

« Vector Analysis
» SMART (Gerard “Gerry” Salton)
» Decision trees
» Cognitive Computing
Rule bases
Machine Learning
» Clustering
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Sibling technologies

» Natural Language Processing (NLP)

» Automated Data Processing (ADP)

» Robotics

» Search — Query, Word, and Phrase Parsing
» Dictionary look-ups and replies
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Supporting technologies

< Audio to text
« Dictionaries
«» Knowledge Organization Systems (KOS)
«» Word and Phrase Parsers
+» Search Software
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Supporting KOS technologies

Gazetteers
Dictionaries

« Classification and Categorization

Subject Headings
Classification Schemes, Taxonomies, and Categorization Schemes

«» Relationship Groups

Thesau':' After Marcia Zeng and Gail Hodge
Semantic Networks www.clir.org/pubs/abstract/pub91abst.html
Ontologies http://nkos.slis.kent.edu/KOS_taxonomy.htm
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http://www.clir.org/pubs/abstract/pub91abst.html
http://nkos.slis.kent.edu/KOS_taxonomy.htm

Various types of KOS Zeng 2008 p.161
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(2) Source: Zeng, Marcia Lei. "Knowledge Organization Systems (KOS)". Knowledge Organization, 352008 1Mo, . 2/MNo .3

Figure 1 shows the types of knowledge organization systems { KOS ), arranged according to the degree of contraols introduced
(from natural language to controlled language} and the strength of their semantic structure (from wealkly structured to strongly
structured?, corresponding to the major functions of KOS, It reprasents a visualized summarization of the Taxonomy of Knowledge
Organization Sources/Systems (http://nkos.slis.kent.edu/KOS5_taxonomy.htm} adopted by the NMKOS group based on Gail Hodge's
article on KOS (www.clir.org/pubs/abstracty/pub©1abst.html}.



Supervised Learning  Unsupervised Learning

classification or

il clustering
categorization

dimensionality

regression :
reduction

Continuous Discrete

https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
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Machine Learning

(relevant sub-disciplines)

Clustering Classification

. : : Assigning things to a list of pre-determined categories
Naive groupings of things according to gning g P (taxogomy)
computed similarity
Nonvascular Vascular plants
o plants A
15 N o

— onseed  Seed plants
plants

#
Ancestral &

/8
Green Mosses, Ferns Conifers
liverworts,

hornworts plants
: “J 3'7"
: /" 5‘1First seed
‘ { plants
i@f" First vascular
T plants

http://bioweb.uwlax.edu/bio203/s2012/harris_gran/classification.htm

/R




i o Pete Best

McCartney Harrison Ringo Starr

Has Banasx
\\\~ Has Membe
Has Band % Has Band
Aas Band
Has Member Yembe : A
Has Membe p
Plastic e T ThT'
Wings B tl raveling
8 Ono Band S as Member Willburys

Has Album
s Album

Has Album

Has Album Traveling

Willburies,
Vol. 1

Has Album

Feeling
the Help!

Space

Has Song
Has Song

Has Song Has Song Has Song

Because Rattled




Plus we have:

Entities (people, places, things)

|dentification

Salience via weighting
Syntactic analysis (Parsing)
Semantic Analysis
Sentiment Analysis
Pragmatic analysis
Grammar
Lemmatization - stemming
Morphological
Lexical variations - synonyms
Part-of-speech tagging
Sentence boundary
Punctuation mark,
Abbreviations
Terminology extraction
Term weighting
Co-Occurrence*
Rules to increase accuracy
Word Parsing
Phrase parsing
Rule bases
Concept extraction

We do not have

Neural Net
Bayesian statistics
Vector analysis
Inference
Co-Occurrence*

@
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-
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* Co-occurrence in our system is based on counts of occurrences



Headlines — the good, the bad, & the ugly

< “Can Artificial Intelligence Help Reduce False-positive
Mammograms?”’

<« “You Might Want Artificial Intelligence Reading Y our Next
Mammogram”

< “When Al writes the Court Rulings™

» “Fast and Accurate Annotations of Short Texts with Wikipedia
Pages”
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Headlines — the good, the bad, & the ugly

< “Without Humans, Artificial Intelligence 1s Still Pretty Stupid”

< “The Future of AI Depends on a Huge Workforce of Human
Teachers” and “Why Al i1s Useless Without Human Beings”

» “Google Has Picked an Answer for You — Too Bad It’s Often
Wrong”

» “Artificial Intelligence Still Isn’t a Game Changer?”
» “Google, Smoogle. Reference Librarians Are Busier Than Ever”
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Headlines — the good, the bad, & the ugly

<+ “Some Al Lessons from Watson’s Failure at MD Anderson”

<+ “MD Anderson Benches IBM Watson In Setback for Artificial
Intelligence in Medicine”

» “Artificial Intelligence and Bad Data”
» “Sky-high Salaries Are the Weapons in the Al Talent War”

< And for ‘STM’ — SciGen — “Tech society retracts 29 articles, ousts
three editors for ‘systematic violation’ of peer review polices™
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IBM Watson and MD Anderson Caneer Center

« First, know that Watson was getting good results!

« The Fall
Not enough data
Inconsistent and bad data
Incompatible systems (Watson <mm) EPIC’s EHR)
Changing objectives mm) o0o0ps, need to retrain Watson!
Lack of Al knowledge and expertise
Cost overruns — US$62 million spend before tabling project D




mdanderson.org

THE UNIVERSITY OF TEXAS

h/]DAnderson - LOCATIONS CAREERS 7 CONTACT US OUR DOCTORS LANGUAGES * Q Search
Chnet oot | | | |

PATIENTS & - PREVENTION & DONORS & FOR
FAMILY SCREENING VOLUNTEERS PHYSICIANS

EDUCATION & CANCER

TRAINING 5 MOONSHOTS




IBM Watson and MD Anderson Caneer Center

« First, know that by the end Watson was getting good results!

« The Fall
Not enough data
Inconsistent and bad data
Incompatible systems (Watson <mm) EPIC’s EHR)
Changing objectives mm) o0o0ps, need to retrain Watson!
Lack of Al knowledge and expertise
Cost overruns — US$62 million spend before tabling project D




Get back to project management basics

put a very clever tool...
« The Hype

< ... find growth and accelerate innovation within an open data environment”

L)

< *“...breaking the silos of the status quo...”
< “Adopting a holistic data strategy...”
<« “...providing next generation...”

<+ “IBM Watson capabilities to unlock previously unavailable data insights™
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Get back to project management basics

» “...to unlock previously unavailable data insights™
« All Al systems produce results

» Not all results are useful or meaningful

< Getting useful results gets expensive quickly

<« Itis Artificial “Intelligence”
Useful output is intelligence
But the Al system Is not “intelligent”
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Get back to project management basics

< Use cases or research objectives
< Business cases
» “Plan your dive. Dive your plan.”

» Without a big budget, keep your expectations in check — narrow your
focus

Do you have US$62 million to blow?
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Get back to project management basics

< Antl-oC1Gen, Take news detection, submissions analysis

» Auto text generation and summarizations (big in the news business)
Court rulings (e.g. Prometea — Argentina)
Washington Post, Associated Press (e.g. sports summaries)

» Machine automated indexing (MAI), semantic enrichment
Image analysis and recognition, info-graphics

*

*

Author & 1nstitution disambiguation, entity extraction, ‘triples’
L generation y
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Get back to project management basics

« Self-driving cars
«» Medical diagnosis
« Alexa

w Slrl

<« |BM Watson
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Some notions of cost

<« Software — free to hundreds of millions
< Support? Think what Redhat did for Linux!
% “Genuine” AI/ML/DL software?

Access Innovations, Inc.- The Science behind the Semantics™ - www.accessinn.com



Some notions of cost continued

< Very large data sets (thousands to millions) must be gathered and
curated

» Data sets must be conceptually and contextually unique — (e.g. 20 to
40 for each semantic node)

» Corrupt and inconsistent data needs normalizing and cleanup
» Remove biased data
» Format consistency
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Clean up your datal




MODEL CALCULATIONS

“Garbage In-garbage Out™ Paradigm

GARBAGE
DATA

GARBAGE
RESULTS

PERFECT
DATA

GARBAGE
RESULTS




Some notions of cost continued

< Look for software that makes training possible in-house
Again, think what Redhat did for Linux and Data Harmony
Need a good user interface for training tasks, app maintenance

« US$.03 to $0.15 per piece at outsourcing services, but up to $2,000,
for example tagging a medical image

< Staff size — (Facebook — 20k and growing!)
« The cost of change — more retraining costs

L)
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Some notions of cost continued

$.03 to $0.15 per piece at outsourcing
services up to $2,000 or....treats!
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Some notions of cost continued

And free perks....
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Some notions of cost continued

Unfortunately....
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Training-costs case study

Improve search discovery

« Goals
Lower cost per item
Improve discovery to 85% or better for recall and precision

« Process was to automatically cluster after using training
sets vs. semantically enrich the content
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Training-costs case study continued

JU DO NOUr 0 Curate traininge
@, @, @,

20 to 40 items per node needed

Review 60 automatically generated items to get to 20 “unique”

Retrain is still 1 hour per node

+ Al using a rules layer with curated taxonomy™ plus...

7500 semantic nodes to train

125 labor hours to curate automatically generated rules layer

Retrain is <5 minutes per node

*Data Harmony® )




Risks? Yes!

C Al C Jddalad ... U A1 CU UdL\lo duUialUl

noncompliance ... unrepresentative data ... biased models
... discriminatory outcomes ... model instability ... over fitting
... performance degradation ... implementation errors ...
poor design ... insufficient training ... technology malfunction
... performance issues ... human machine interface failures
... opacity ... explain-ability ...




An Example of how the ICD-10 Rule Base “Learns”

<ttm>excema</ttm>
<rule>
IF (WITH "flexur*")
USE L2082 (Flexural eczema)
ENDIF
IF (WITH "infant*")
IF (WITH "chronic*" OR WITH "acute")
USE L2083 (Infantile (acute) (chronic) eczema)
ENDIF
ENDIF
IF (WITH "intrins*" OR WITH "allerg*")
USE L2083 (Intrinsic (allergic) eczema)
ENDIF
IF (NOT (WITH "flexur*" OR WITH "infant*" OR WITH "intrins*" OR
WITH "allerg*"))
USE L2089 (Other atopic dermatitis)
ENDIF </rule>

We begin with a trigger word (Text to Match
or TTM). When the system sees this word in
the documentation, the system then begins
reading the rule for further clarification
Proximity indicators (AROUND, WITH, NEAR,
etc) let the system know how near to the
trigger word that it should read the text
When a condition (TTM, along with further
conditions) is met, a code is recommended

If the TTM is the only condition that is met,
the system reverts to an “unspecified” or
“other” code. While this is an indicator of poor
documentation, it gives the user a
recommendation, as well as proximity to
additional codes that could be documented to
have more specific code recommendations

As more and more documentation is run
through the system, the rules become
increasingly refined



And, finally...

And your good luck will come
from good planning and good
execution!
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