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Purpose and aims

• To establish the value of automatically produced classes for Swedish digital 

collections

• Aims

• Develop (and evaluate) automatic subject classification for Swedish 

textual resources from the Swedish union catalogue (LIBRIS)

• http://libris.kb.se

• Data set: 143,756 catalogue records containing DDC in LIBRIS

• Using a machine learning approach 

• Multinomial Naïve Bayes (NB)

• Support Vector Machine with linear kernel (SVM)

http://libris.kb.se/


Rationale…

• Lack of subject classes and index terms from KOS in new digital collections







… Rationale

• DDC chosen as a new national ‘standard’ in 2013

• LIBRIS has a large collection of resources with DDC assigned to Swedish 

resources to train on

• Explore automatic classification on Swedish DDC  interoperability, cross-

search, multilingual, international…

SAB  DDC
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DDC

• 23rd edition, MARCXML format

• 128 MB  relevant info extracted into MySQL database, total of 14,413 

classes



Data collection

• LIBRIS: 143,838 catalogue records in April 2018 

• Using OAIPMH protocol, MARCXML format

• All LIBRIS records with 082 MARC field for DDC class

• Relevant info extracted into MySQL:

• DDC classes truncated to 3-digit codes, to maximise training quality



Training problem: imbalance between classes

• The most frequent class is 839 (Other Germanic literatures) with 18,909 

records

• In total 594 classes have less than 100 records (70 of those have only 1 single 

record)

 A dataset called “major classes” containing only classes with at least 1,000 

records:

• 72,937 records spread over 29 classes

(60,641 records spread over 29 classes when selecting records with 

keywords)



The different datasets generated from the raw LIBRIS data



Classifiers

• Pre-processing

• Bag-of-words approach (stop-words retained)  over 130,000 unique 

words

• Unigrams and 2-grams

• TF-IDF scores

• Multinomial Naïve Bayes (NB) and Support Vector Machine with linear 

kernel (SVM) algorithms

• Both have been used in text classification numerous times with good 

results

• SVM typically better results than NB, but slower to train

• NB can be trained incrementally, i.e. new training examples can be 

added without having to retrain the model with all training data



Evaluation measure

• Accuracy

• Amount of correctly classified examples

Accuracy = 

Correctly classified examples

Total number of examples
%
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Major results

• SVM better than NB on all classes

• On test set, best result 81.4% accuracy for classes with over 1,000 

training examples, or 58.1% accuracy for all classes 

• When using both titles and keywords, unigrams and 2-grams

• Features

• Number of training examples significantly influences performance

• Keywords better than titles, keywords + titles best

• Stemming only marginally improves results



NB SVM



Top two levels, all examples from all classes

• Accuracy increased from 58.1% (three digits, 802 classes) to 73.3% (two 

digits, 99 classes)



Stopwords and less frequent words

• For major classes

• Removed stopwords (_sw)  reduced accuracy in most cases

• Removed less frequent words from the bag-of-words (_rem)  increased 

accuracy from 81.8% to 82.2%



Word embeddings

• Word embeddings combined with different types of neural networks:

• Simple linear network (Linear)

• Standard neural network (NN)

• 1D convolutional neural network (ConvNet)

• Recurrent neural network (RNN)

• Worse results than NB/SVM, but very close (80.8% compared to 82.2%)

• Advantage of word embeddings is having a smaller representation 

size (then the stored data takes less space)



Common misclassifications

• Whole dataset:

• Class 3xx (Social sciences, sociology & anthropology)

• Other classes often misclassified as belonging to 3xx 

• 3xx often misclassified as other classes

• Most misclassifications between 3xx and 6xx 

(Technology)

• Major classes dataset:

• Fiction – mostly based on language and country

• 823 (English fiction) misclassified as 839 (Other 

Germanic literatures)

• 813 (American fiction in English) misclassified as 823 

and 839 

• 306 (Culture and institutions) misclassified as 305 (Groups 

of people)
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Try improve algorithm performance…

• More training examples

• Through linked open data and URIs from elsewhere?

• Include records with SAO and LCSH without DDC, and through the files 

with mappings of SAO and LCSH to DDC, try use them as training 

documents?

• Norwegian / other catalogues in DDC?



…Try improve algorithm performance…

• Take advantage of DDC 

• Establish how these contribute to classification accuracy



…Try improve algorithm performance

• Evaluate ensemble learners combining different types of algorithms

• String matching in the lack of training examples 

• Maui software http://www.medelyan.com/software

• Scorpion approach 

https://www.oclc.org/research/activities/scorpion.html

• Enrich with Swesaurus for more mappings and disambiguation

https://spraakbanken.gu.se/resource/swesaurus

http://www.medelyan.com/software
https://www.oclc.org/research/activities/scorpion.html
https://spraakbanken.gu.se/resource/swesaurus


Evaluation

• Test for all levels of classes

• Test with algorithms outputting more than one class

• Include misses in evaluation using measures like F-measure combining 

precision and recall

• Manual evaluation to identify causes for successes and failures

• Evaluate in the context of retrieval in real IR tasks



New forum for automatic indexing / classification

• DCMI Automated Subject Indexing IG

http://www.dublincore.org/groups/automated_subject_indexing_ig/

• Open to all

• Place where we could collaborate?

• Create open source solutions?

• Annif (http://annif.org)

http://www.dublincore.org/groups/automated_subject_indexing_ig/
http://annif.org/


New IFLA WG

• https://www.ifla.org/subject-analysis-and-access

• Automated Subject Analysis and Access Working Group

• https://www.ifla.org/node/92551

https://www.ifla.org/subject-analysis-and-access
https://www.ifla.org/node/92551


Thank you for your attention!

• Questions? Feedback?

• What does the practice want to see? 

• For which applications: Web Archives, repositories, CH collections, 

cross-search…?

• Contact: koraljka.golub@lnu.se

mailto:koraljka.golub@lnu.se

