
Knowledge Node and Relation Detection

Jian Qin School of Information Studies Syracuse University


NKOS Workshop at DCMI/TPDL, Porto, Portugal, September 14, 2018

It is all about subject content representation

School of Information Studies SYRACUSE UNIVERSITY

Increase interactivity by transforming the way knowledge is represented

School of Information Studies

SYRACUSE UNIVERS

Limitations

- Lack of rich relations between concepts (or other types of things) beyond scope relations
 - Between publications and data
 - Between datasets in different data repositories
 - Inside data and/or publications:
 - Between different types of entities
 - Between different topics
 - ...
- Discrete terms from indexing process that must rely on relations defined in controlled vocabularies to show relations

In linked data age...

Knowledge Organization (KO)

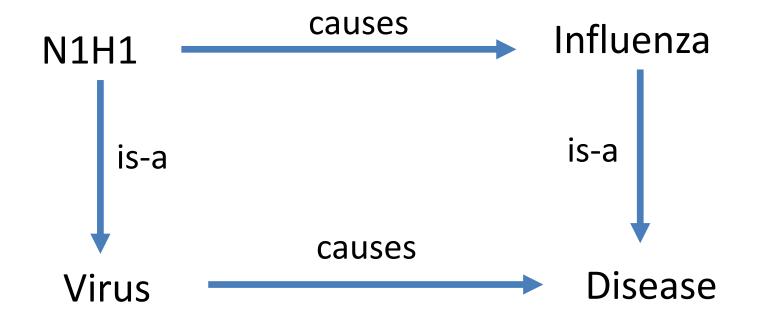
KO systems or structures

Codified in some formats and structures

Codified in triples or structures that can facilitate computational processing and analysis

Knowledge

Representation (KR)


Knowledge nodes and relations

How knowledge is represented?

• Currently two practices:

- From natural language in full-text documents
 - Traditional indexing
 - Natural language processing and machine learning
- From existing KOS through remodeling and restructuring
 - Converting existing KOS into linked data service (LCSH, MeSH, AAT)
 - Transform legacy data into linked data (e.g., library linked data)

Paradigm shift from term-based representation to node-relation representation

School of Information Studies

Concept detection is relatively straightforward with help of KOS. Relation detection, however, has become the jewel in the crawn (or bottleneck problem) for representation knowledge in linked data age.

Experiment

- 30 documents from PubMed
- Hand annotated 150 sentences to identify knowledge nodes (knodes) and relations in format [k-node(A), relation, k-node(B)]
- Indexing software used: MetMap and SemRep
 - Both support concept detection backed by UMLS
 - SemRep supports relation extraction
- Evaluation of results used Bilingual Evaluation Understudy (BLEU) and cosine similarity algorithm

Research questions

- To what extent manually annotated and automatically generated k-nodes and relations are similar or dissimilar?
- What are some of the patterns of agreement and/or disagreement between the two sets of results?
- How can human intelligence (human-intervened k-node and relation recognition) be translated into machine intelligence for more accurate knowledge representation?

Findings: degree of abstraction

Sentence	Manually annotated k-nodes	MetaMap extracted k- nodes	SemRep extracted k-nodes
Unlike most pathologic testing, which serves as an adjunct to establishing a diagnosis, the results of HER2 testing stand alone in determining which patients are likely to respond to trastuzumab,	 pathologic testing HER2 testing monoclonal antibody trastuzumab HER2 diagnosis 	 pathologic testing results of her2 testing respond to trastuzumab results of her2 testing a monoclonal antibody against her2 diagnosis 	antibody
a monoclonal antibody against HER2.	uldgilUSIS	ulagilosis	 diagnosis

Findings: degree of abstraction

	Sentence	Manually	MetaMap extracted	SemRep extracted		
		annotated k-nodes	k-nodes	k-nodes		
	At present, several preanalytic factors, including the time from	time from tissue removal to tissue fixation	time from tissue removal tissue fixation	time removal		
	tissue removal to tissue fixation, are	preanalytic factor HER2 testing	several preanalytic factors	tissue fixation factors HER2		
	underappreciated as important variables that have the potential to negatively impact the	preanalytic factor consistency reliability	reliability of her2 testing several preanalytic	testing consistency		
consistency and reliability of HER2 testing.		factors consistency				

SARACASE ANIAFREIL

cs

Findings: degree of abstraction

Relations detected by SemRep	Relations from manual annotation			
	Exact match	Similar/Partial match	No match	
AFFECTS	affects	allows, improves, impacts, promotes provides, controls	is against is essential to documents enumerates confirms assesses assays begins with demonstrates establishes harbors has identifies includes is approved by is performed by	
IS-A	is-a	is a kind of, exists, is equiv- alent to, is a prototype for, is given as		
ASSOCIATED_WITH	is associated with	is-for correlates		
AUGMENTS	expands			
CAUSES	Causes, makes, determines	leads to, promotes, drives, improves		
COMPARED_WITH		is measured by, is-tested- by, measures, is-in-context		
LOCATION_OF				
METHOD_OF	is-method-for		predicts responds to	
PART_OF	is-part-of	is a factor of, has-attribute, has condition of		

School of Information Studies

Findings: types of k-nodes and relations

Simple k-node relations: two simple k-nodes are connected by a direct relation in the form of a single verb: $A \rightarrow B$

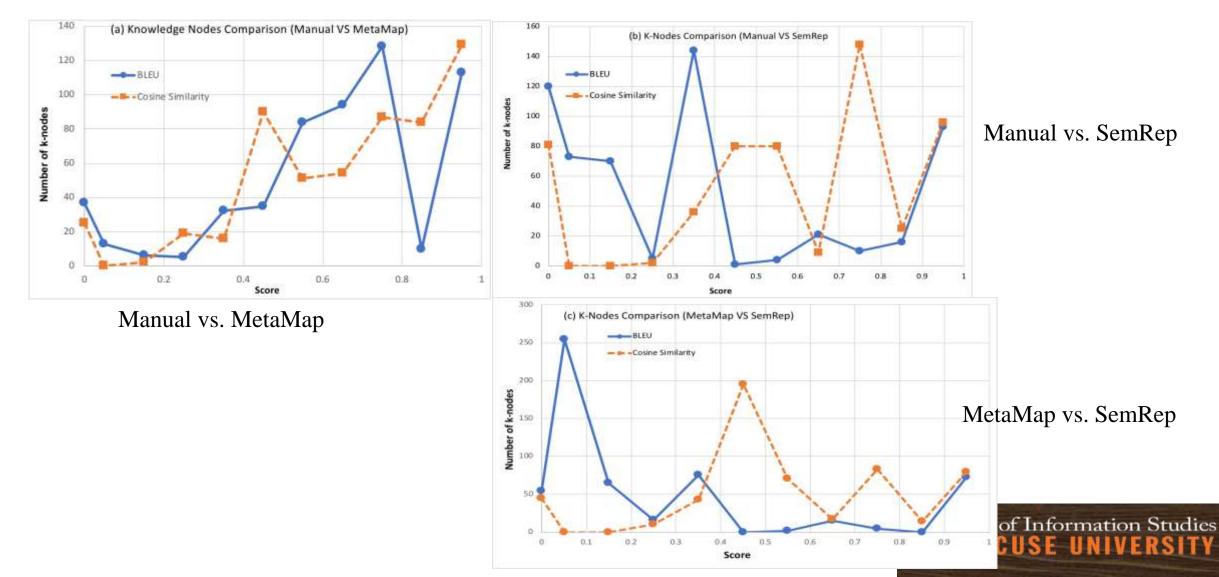
(amplification_of_HER2_gene, promotes, receptor_activation) (tumor, harbors, HER2_molecular_alteration)

Compound k-node relations: refers to situation where one k-node is related to more than one k-node that has the same or different relations: $A \rightarrow (B_1 \dots B_n)$

(overexpression_of_receptor, mediates, biol(overexpression_of_receptor, mediates, clin(overexpression_of_receptor, drives, pro(overexpression_of_receptor, drives, sur

biology_behavior_of_HER2-positive_tumor_cells)
clinical_behavior_HER2-positive_tumor_cells)
proliferation_of_tumor_cells)
survival_of_tumor_cells)

(overexpression_of_receptor, mediates, (biology_behavior_of_HER2-positive_tumor_cells, clinical_behavior_HER2-positive_tumor_cells)) (overexpression_of_receptor, drives, (proliferation_of_tumor_cells, survival_of_tumor_cells))


Findings: types of k-nodes and relations (cont'd)

Complex k-node relations: multiple k-nodes and the relations chained together by

"bridge" k-nodes: $A \rightarrow (B \rightarrow C)$

(HER2_testing, determines, (patient, responds-to, trastuzumab))(trastuzumab, is-a, monoclonal antibody against HER2)

Evaluation scores for three k-node detection methods

Evaluation scores for UMLS term matching

Discussion and conclusion

- knowledge node and relation recognition from full-text documents is highly challenging, yet critically important in the big data era.
- Each of k-node and relation detection methods has different areas of strengths and limitations.
- Automatic tools have a long way to go
- K-node and relation representation facilitates knowledge network generation

