Thesauri and ontologies: similarities and differences

Daniel Kless

Outline

• Interpretations of Ontology

– From Semantic Web to philosophy

- Relata the entities related by relationships
 - Concepts vs.

Classes, Universals, Individuals and Collections

- Relationships
 - Hierarchy, associations

Interpretations of "Ontology"

Classical ontology

- Plato, Aristoteles, Chisholm, Lowe

- Formal ontology
 - Husserl, Hartmann
 - Top-level Ontologies (DOLCE, BFO, GFO, SUMO)
- Complex Domain-Ontologies: ? Method ?

– IAOA: Applied Ontology journal, FOMI, FOIS

• Semantic Web: syntactic, data model

Outline

- Interpretations of Ontology
 - From Semantic Web to philosophy
- Relata the entities related by relationships
 - Concepts vs.

Classes, Universals, Individuals and Collections

- Relationships
 - Hierarchy, associations

Approach

- Based on entity definitions
 - Thesaurus: standard ISO 25964-1
 - Ontology: Scientific realism (literature)
- Mappings (not exhaustive)
- Focus: Intensionality vs. extensionality of definitions

Results

Comparison of *relata* thesaurus vs. ontology

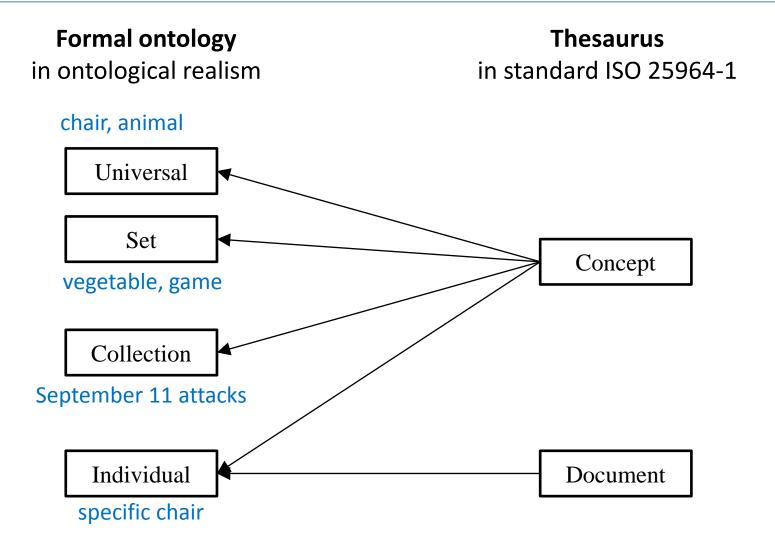


Figure 1

Discussion

- Distinction of concepts into universals and "other things" necessary to map relations
- Difficult due to lack of definitions unclear intension / intrinsic properties
- Universals useful basis for reasoning

Outline

• Interpretations of Ontology

– From Semantic Web to philosophy

- Relata the entities related by relationships
 - Concepts vs.

Classes, Universals, Individuals and Collections

• Relationships

- Hierarchy, associations

Approach

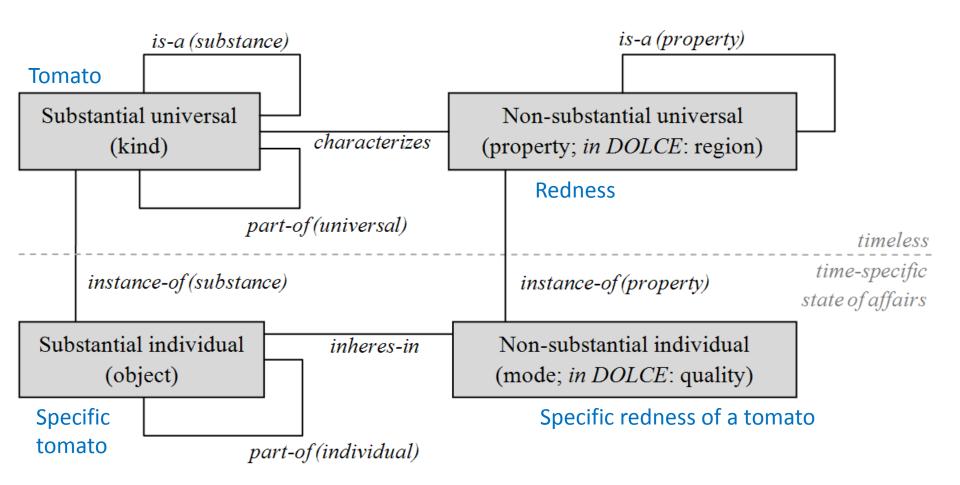
- Based on relationship definitions
 - Thesaurus: standard ISO 25964-1
 - Ontology: Lowe (2005) + Paper by Bittner et al. (2004),
 Keet & Artale (2008) for part-of relations
- Correspondences thesaurus \rightarrow ontology
 - Analysis with increasing level of detail
- Focus: transitivity, categories of relata
 - Ontology categories: DOLCE (Gangemi et al. 2002), Lowe (2005)
 - Thesaurus categories: informal in standard
 - Mapping of categories ... just word-meaning based

Thesaurus relationships

- Equivalence relationship
- Hierarchical relationship (BT/NT)
 - Generic relationship
 - Hierarchical part-of relationship
 - Instance relationship
- Associative relationship

Hierarchical part-of relationship

Comparison of *relationships* thesaurus vs. ontology


1 st relata	2 nd relata	Example
Systems of the	Organs of the body	Cardiovascular system –
body		Blood vessels – Arteries
Geographical	Geographical	Canada – Ontario – Ottawa
location	location	
Discipline or	Discipline or field	Science – Biology – Botany
field of	of discourse	
discourse		
Social entity	Social entity	Armies – Corps – Divisions

Associative relationship

Comparison of *relationships* thesaurus vs. ontology

1 st relata	2 nd relata	Example
Operation or	Agent or	Crime investigation – Detectives
process	instrument	Temperature control – Thermostats
Action	Action	Weaving – Cloth
	product	Ploughing – Furrows
Action	Patient or	Harvesting – Crops
	Target	Imprisonment – Prisoners
Discipline or	Object or	Ornithology – Birds
field of study	phenomenon	Forestry – Forests
	studied	

Fundamental ontology relationships Comparison of *relationships* thesaurus vs. ontology

Mereological ralations in ontologies Comparison of *relationships* thesaurus vs. ontology

- Ground mereology (transitive, reflexive, symmetric) not always basis for linguistic part-of
- Just some part-whole are transitive (mereological relations)

 Distinction of relationships requires categories (domain and range specification) here: DOLCE categories (top-level ontology)

DOLCE main categories

Comparison of *relationships* thesaurus vs. ontology

- Endurant... change over time, keep identity
- Perdurant... do not change, no identity
- Most relata categories of thesauri and ontologies can be mapped

Figure 1

Comparison results: General relations

Comparison of *relationships* thesaurus vs. ontology

Thesaurus relationship	Ontological relationship	Level	Transitivity
Hierarchical relationship	Different relationships	n/a	Non-transitive
Hyponymy / Generic relationship	Is-a	Universal	Transitive
Meronomy / Hierarchical part-of relationship	Different part- whole relationships	Universal or Individual	Non-transitive
Instance relationship	Instance-of	Betw. universal and individual	n/a
Associative relationship	Different custom relationships	n/a	Non-transitive

Results: General relations

- Particular hierarchical part-of relations in thesauri match transitive ontological part-of relations
- Particular thesaurus associations generally match intransitive ontological relations

Discussion

Comparison of *relationships* thesaurus vs. ontology

• Transitivity does not hold across different (transitive) relationships, e.g.

Plant reproductive organs Seed (hyponym) Kernels (meronym) Endosperm (meronym) Testa (meronym) Fruit (hyponym)

Discussion

Comparison of *relationships* thesaurus vs. ontology

- Thesaurus hierarchy appears in one form or another – in ontologies as well
 - \rightarrow appear similar
 - Need for detailing thesaurus relationships
- Cursory usage of terms such as 'class', 'instance', 'property' or 'category' in definitions of thesaurus relationships, e.g.

Geopolitical entity \rightarrow Country \rightarrow Canada

- \rightarrow Special structural importance in ontologies
- → Inadequate to regard ontologies simply as a more formalized type of thesaurus

Discussion: Why are the differences Comparison of *relationships* thesaurus vs. ontology

Purpose thesaurus relations

- Pointing indexers or searcher to related, broader or more specific terms/concepts
- Allowing searchers and indexers to navigate a thesaurus
- Automatic expansion of search queries

Purpose ontology relations

- Predicating

 (explain or account for phenomena of philosophical interest)
- Reasoning

Discussion: Why transitivity?

- Automatic expansion of search queries over greater path lengths (thesauri)
 - → Lack of quantitative proof for suitability of relationship definitions
- Maintainability

Discussion: Choose ontologies?

- Is-a relation diagonal/independent from part-of relation
 - Navigability possibly impeded (as opposed to thesauri)
 - Need for compensation in user interface
- Logical structure often less familiar to users
 - Expect concepts in "traditional groupings" of disciplines and subject fields

Conclusions

- Many apparent similarities
- Difference in detail
 - Distinguishing relations
 - Fundamental structure (universal vs. individual)
 - Special importance of high-level categories
 - Definition of intrinsic properties**
- No "easy" mapping or reengineering possible, if goal is reasoning and wider integration