Brief report on NKOS at JCDL2003

NKOS ECDL 2003

Dagobert Soergel
College of Information Studies
University of Maryland

Theme

- How to transform traditional KOS into systems for AI and semantic Web applications, thus
- Leveraging the large pool of knowledge available in existing KOS for lowering the cost of developing knowledgeintensive applications

Presentations

- 1. From legacy knowledge organization systems to full-fledged ontologies Dagobert Soergel, U. of MD
- 2. Reengineering AGROVOC to Ontologies. Towards better semantic structure F. Fisseha, A. Liang, J. Keizer, FAO
- 3. From semantic networks, to ontologies, and concept maps: knowledge tools in digital libraries. M. A. Gonçalves, Digital Library Res. Lab., VATech
- 4. Using the NASA Thesaurus to Support the Indexing of Streaming Media Gail Hodge, Janet Ormes, Patrick Healey, NASA Goddard
- 5. Concept-based Learning Spaces. Apply domain-specific KOS principles for organizing collections/services for given applications Terence Smith, UC Santa Barbara, Marcia Lei Zeng, Kent State Univ.; Alexandria Digital Library Project
- **6. Web Services and Terminology**. Adam Farquhar, SchlumbergerSema
- 7. Update on Revision to the NISO Z39.19 Thesaurus Standard and Other Terminology Standards (Amy Warner, Lexonomy, Inc./consultant to NISO)

Example 1

Consider

Reading instruction isa Instruction

Reading instruction has domain Reading

Reading instruction governed by Learning standards

Reading ability isa Ability

Reading ability has domain Reading

Reading ability supported by Perception

Example 1, cont.

Can use the rules

Rule 1
 If X isa (type of) instruction and X has domain Z and Y isa ability and Y has domain Z
 Then X should consider Y

Rule 2
 If X should consider Y
 and Y is supported by W
 Then X should consider W

Example 1, continued

ERIC Thesaurus entries

Reading instruction

BT Instruction

RT Reading

RT Learning standards

Reading ability

BT Ability

RT Reading

RT Perception

Broader Term (BT) and Narrower Term (NT) relations in AGROVOC

BT and NT are typical *hierarchical* relations in a thesaurus. However, their semantics is not explicitly defined. It is common for BT/NT relations within a thesauri to include at least the following:

•Is-A (e.g. Milk/ Cow's Milk; Development Agency/IDRC))

- •Ingredient of (e.g. Milk/ Milk Fat)
 - Milk fat is an ingredient of milk
- Property of (e.g. Maize/Sweet corn)
 - Sweetness is a property of corn

Some examples from AGROVOC

MAIZE

NT dent maize

NT flint maize

NT popcorn

NT soft maize

NT sweet corn

NT waxy maize

MILK

NT Milk Fat

NT Colostrum

NT Cow's Milk

Development Agencies

NT development banks NT voluntary agencies NT IDRC

Related Term (RT) in AGROVOC

RT represents the **associative** relation. The RT usually involves the most ambiguous semantics. RT can include the following.

- causality
- agency or instrument
- hierarchy where polyhierarchy has not been allowed the missing hierarchical relationships are replaced by associative relationships
- sequence in time or space
- constituency
- characteristic feature
- object of an action, process or discipline
- location
- similarity (in cases where two nearsynonyms have been included as descriptors)
- antonym

Some examples from AGROVOC

DEGRADATION

 RTchemical reactions RT discoloration RT hydrolysis

• RT shrinkage

IDRC

RT Canada

•

location

causality

Some ideas for reengineering AGROVOC

Most of the problems could be solved by:

- 1.Re-analyzing the existing relations to introduce explicit semantics: for instance,
 - **–BT/NT** relationship could be resolved to **'Is-A'** relation
 - -RT relationship could be refined to more specific relationships (such as "produces", "used by", "made for").
- 2. Specifying composite concepts in terms of basic concepts that can be un-ambiguously represented: for instance
 - -Perishable product could be represented as "product" with attribute "perishable"
 - -Fencing sword could be represented as "sword" used for "fencing"
 - -Mother could be represented as "parent with an attribute female"

Steps in converting a legacy KOS

- 1) Define the ontology structure
- 2) Fill in values from one or more legacy KOS to the extent possible
- 3) Edit manually using an ontology editor:
 - make existing information more precise
 - add new information

Intelligent conversion using "rules as you go"

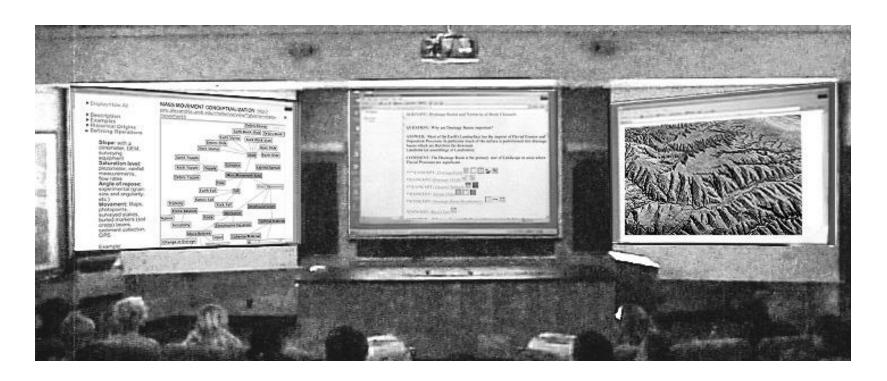
If an editor has determined (or it is known from another source, such as FDA's food vocabulary) that there is a relationship

animal has-part milk

it can be concluded that cow NT cow's milk should become cow has-part cow's milk

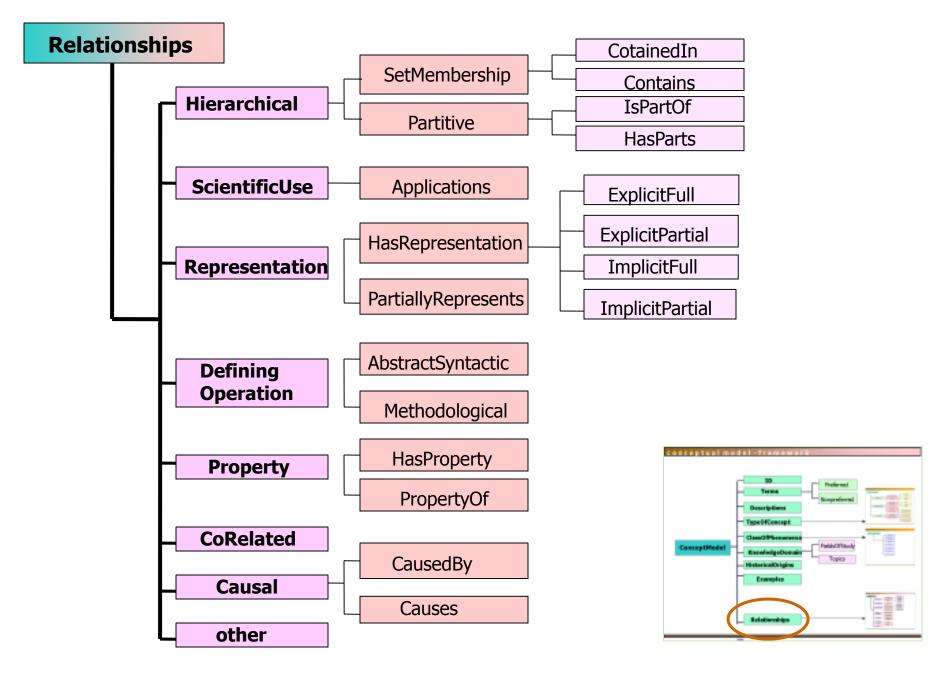
since cow is an animal and "cow's milk" contains the word "milk".

This clearly indicates that the reengineering effort should start with the topmost concepts.


Application in education

From the Smith and Zeng Paper

Science learning spaces: Concept KOS


- Concepts of science as basic knowledge granules
 - Sets of concepts form bases for scientific representation
 - DL and KOS technology can support organization of science learning materials in terms of concepts
 - Collections of models of science concepts (knowledge base)
 - Collections of *learning objects (LO)* cataloged with concepts
 - Collections of instructional materials organized by concepts
- Organize learning materials as "trajectory through concept space"
 - Lecture, lab, self-paced materials
 - Services for creating/editing/displaying such materials

Learning environment display (lecture mode)

- The lecture is presented on three projection screens, showing the
 - Concept window (left)
 - Lecture window (center)
 - Object window (right)

conceptual model-relationships

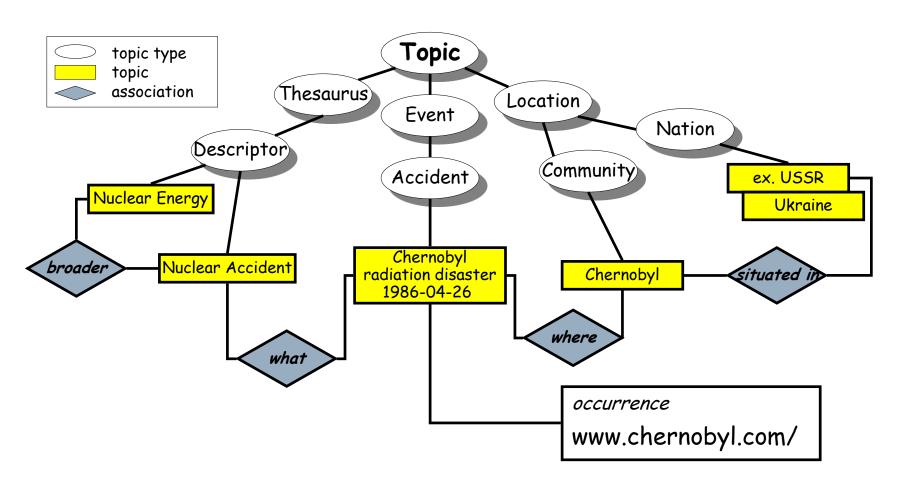
6th NKOS Workshop May 31, 2003

Semantic Network Services

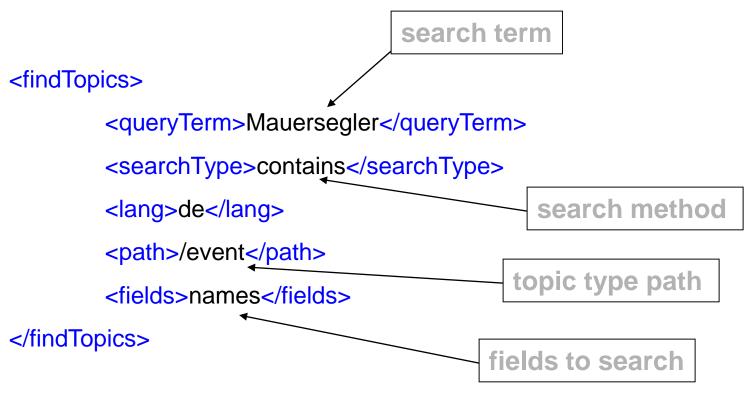
Sharing an integrated Ontology using Topic Maps and Web Services

Adam Farquhar (presenter)

KM Architect, Schlumberger, Austin, TX


Thomas Bandholtz

KM Solution Manager, SchlumbergerSema, Cologne (DE)


Member, OASIS TC Published Subjects & GeoLang (Topic Maps)

Research project UFOPLAN-Ref. No. 20111612, promoted by BMU/Federal Environmental Agency, Germany

Integration in a Topic Map

sns: findTopics

results in a list of matching topics

Conclusion

- Papers on how to convert legacy KOS to systems with richer, precisely defined semantics (ontologies?)
- Papers on applications of such rich ontologies
- Shows a direction the field should move in

S

• n

• H

S

• n

• H